WAVE MOTIONS IN A VISCOUS FLUID LAYER
IN THE PRESENCE OF SURFACTANTS

0.V, Voinov

Waves in viscous fluid layers covered by a layer of surfactants of arbitrary elasticity and bounded by
a solid surface or just a gas are examined on the basis of the exact solution of the linearized Navier—
Stokes equations. In the particular case of thin films, van der Waals forces are taken into account in addi-
tion to the capillary and gravitational forces. The influence of the layer thickness on the amplitude of the
maximum damping decrement of the wave is determined. For thin films in a gas there exists a critical
value of the surface elasticity for which the rate of perturbation growth is slowed down when it is exceeded.
Far from the neighborhood of the critical value, the rate of growth of the perturbations depends weakly on
the elasticity of the surface layer. The questions under consideration are important in investigations of the
stability of liquid foams.

The hydrodynamic approach to the phenomenon of capillary-gravitational wave quenching in a fluid by
surfactants has been developed by Levich [1]. Solutions have been given of the problems of wave damping
on the surface of an infinitely deep fluid in the presence of surfactants of arbitrary concentration. The
problem of wave damping in a fluid of finite depth has been solved in the particular case of an incompres-
sible surfactant layer for high Reynolds number in [2]. Recently, a large number of experimental papers
on the quenching of capillary waves has appeared (see [3], as well as the brief survey in [4]). It has been
disclosed that, for definite values of the elasticity of the surfactant layer, the wave damping exceeds the
damping corresponding to infinite elasticity.

1. Fluid of Finite Depth. Fundamental Equations, A plane-parallel layer of viscous incompressible
fluid with surface tension ¢ bounds a gas, at least on one side, and its free surface is covered by a surfact-
ant layer, The Navier—Stokes equations for low-amplitude waves are written in the linearized form

p%:—gradp+F+uAv, divv=0 1.1

If the fluid layer bounds a solid surface, then the gravity force Fy = pg is taken into account. (The z
axis is directed toward the solid boundary, and g is the acceleration of gravity.) In the particular case of
long waves in thin films, it is interesting to take account of the van der Waals forces of attraction acting in
the fluid besides the capillary and gravitational waves, It is convenient to take account of these forces by
including the volume force Fy in the component (the x axis is along the film); then the pressure p in the ap-
propriate quantity will differ from the total pressure. However, the form of the equations (1.1) does not
change. On the basis of known results (see [5-7], for example), it is possible to write for small perturba-
tions of the layer thickness h

F, = Qoh/oz, Q = A2npt 1.2)

The constant A in (1.2) equals the Hammacher constant (A > 0) for a film in a gas. In specific cases,
A < 0 can hold for a layeron a solid surface,

The influence of surfactants is taken into account according to [1]. In the case of plane waves on a
free surface, the tangential stress is
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Pe=p(GEt ) =2 o im0 (1.3)

The equation of surfactant conservation should be added to (1.3), as should the expression for the
elasticity of the surface layer £ . Neglecting surface diffusion,

ar v, ds

can be written [1] for the surface concentration I' of insoluble surfactants,
For small displacements ¢ of the fluid particles along the z axis, the pressure p; in the gas and the
pressure p near the free surface differ by

ﬂ,;— for z=0 (1.5)

82 dx?

D— Pp=
The kinematic conditions on the free surface and on the solid boundary are
v,=38;/dt for. z=0, v,=0,=0 for-z=~h (1.6)

For the case of a fluid of finite depth, the general wave solution of (1.1) can be written as follows:

vy=1i(k(Aychkz } Ayshkz) 4 I (Bychl'z - B, shl'z))ethxiatt
=k (4;shkz - Aychkz + By sh{'z 4 B,chl'z) gibxsat

1.7
P =P+ 082 — QL (0) — pa’ (A4, chkz - A, sh kz) etkxtat (
(r=d" v+
The pressure p has here been found by taking account of (1.2), where £ (0) =h; —h (b, is the thickness

of the unperturbed layer). The coefficients in (1.7) can be found from (1.3)-(1. ) It is natural to seek the
displacement in the surface ¢ (0) and the surface concentration I' as

C(O) — Cleikxﬂz't , T = I‘O 4+ I‘leikx+a’t (1 8)
To simplify the computations, it is convenient to introduce the notation

a=a /vk? Q=(k2(pg—Q)toc)/pv?k, S=—e/pvk, [=Va+1
a=FLh 1.9}

Here, the branch of the function vz in the complex plane has been chosen by using a slit from 0 to
—o along the real axis. After the elimination of I'y the following system of equations can be obtained from
(1.3)-(1.9):

@ +a) 4; +21B, = (4, + B,y) Q/a

24, + (2 + @) By, = (4, +B)) 8 (1.10)
Aycha +-A;,sha 4 1Bychla 4 1B,shla =0
Aysha +A4,cha 4 Byshlile +~B,chla=0

A complex conjugate corresponds to every solution of the system (1.10), which is an expression of
the invariance of the problem relative: to a change in direction along the x axis. An equation for o follows
from the condition of compatibility of (1.10). The imaginary part of o determines the frequency of oscilla-
tion, and the real part the damping decrement. The value of & can be found analytically in the limit cases
|o|@? «1 and |a|a? > 1 as well as within the limit of high » (|| < 1) or low (|o] >1).

2. Waves for |aa® <1, Low Viscosity. The unknowns By and B2 in the system (1.10) can be re-
placed as follows in the case |I|a »1:

B,=B, By=fe®_B (2.1)

Neglecting the exponentially small terms exp (-Re la) in (1.10) after having eliminated f yields the
following equations:

(2 +a) 4; +2IB = (4, — B) QJa, 24, — (2 +a) B = (4, 4 IB) §/a
Ay (1 —1the) + 4, (tha — ) =0 (2.2)
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The compatibility condition of the system (2.2) allows us to obtain:

@ (2 o) — ¢Q - 4lg) +6 (o — IgQ — Q) =0

¢ = (1 — I tha) (I — tha)™! (2.3)

The solution of (2.3) for © > 1, Qa® >» 1 can be found by iteration. Two approximations are sufficient
for a qualitative investigation. Taking the initial point o = @ corresponding to the value in an ideal fluid,
just as in [1], the following asymptotic formulas can be obtained from (2.3):

o = oy - dy, o, =iy Qthea
dy=—2+ (1 + (1 + ch®a) b, ") Q/ 2ch® a (" + 6) 2.4)

Here and henceforth, only one root of the conjugate pairs will be written down. As is seen from (1.7)
and (2.2), the solution (2.4) corresponds to a wave in which the viscosity is manifest only in a thin layer
near the surface [8], while the motion in the volume is similar to ideal fluid motion, A solution of (2.3)
exists, in addition to (2.4), which is for § »1, §a° »>1

= (VT8 @y =y (Q/8— ") (1 —Qtha/8Va) ™"

According to (1.7) and (2.2), wave motion in a thin layer of thickness ~[I'|™ near the free surface
corresponds to this latter solution, where |Vx| > |v,|. This "near-surface" wave appears only because of
the presence of surfactants; its damping is high and independent of the layer thickness in a first approxima-
tion. Formulas for the frequency shift ¢ and damping & of the "volume" wave follow from (2.4)

t=Ima, = — Q[ch~2a — 2y (14 y?)~1/28,,
{=Reay=—2—Qlch?a +2(1 +y)126, (2.5)
y = 0,/6 —1, 8, = V2 (Q th a)'

The passage to the limit as a — « in the last formulas yields appropriate formulas of the theory of
‘capillary-gravitational wave damping in a fluid of infinite depth [1] (fo the accuracy of the notation). If we
pass to the limit as 6 — « (an incompressible surfactant layer), and neglect the first members in the
formula for £ (2.5), the formulas then yield the result in [2], which has been obtained by another method. A
negative frequency shift has been noted in [2]. According to (2.5), the frequency shift is a nonmonotonic
function of the elasticity 6, negative for 6 = 0 and 6 —w, positive for

8, (1 +ch*a+ YehPa — 1)1 <8< 8, (1 +ch*a — YehPa — 1)t

As the layer thickness diminishes (@ — 0) the domain of the positive frequency shift degenerates into
the point 6 = (© tha)3/ 4/v2. For any a the damping { reaches the value of the damping for an incompres-
sible layer &, for 6 =6y, For § > Ok the wave damping is greater than in the case of an incompressible
layer. The maximum value of the damping equals

bm = Lo (1 +-2ch?a) (1 fch® )™ for & =3, (2.6)

It is seen from the expression for ) and (2.6) that for long waves (@ « 1) about a =3/ less elasticity
of the surfactant layer is required than in the case of a fluid of infinite depth in order to achieve the quench-
ing effect of the incompressible su};faf:tant layer, 1 .e., free-surface stabilization is achieved more easily in
the layer than in the depth of the fluid.

The dependence of the frequency shift f = ¢ and damping f = ¢ on the dimensionless elasticity coef-
ficient
P O
V2(Qthayht
is presented in Figure 1. Curves 1 and 3 describe the limit cases a — «, a — 0, and curve 2 is fora =1.
As the layer thickness diminishes, the amplitude of the damping maximum referred to the damping for an

incompressible layer £., is reduced from 2 to 1.5, and the domain of elasticity values in which the fre-
quency shift is positive vanishes in the limit @ — 0 (@ > |I|™). It is interesting to clarify the nature of the
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7 wave motion at the maximum point. From (1.7), 2.1), (2.2), and (2.4) it is
possible to obtain in the limit | Z|a@ > 1, |1 | >1 for the ratio between the

r
Too 2
% velocities at the surface

v, |V, =tha(i+ L —1)8/V2(Qtha)h) 2.7

3 // It is seen that the fluid particle trajectories on the surface are el-
0 \/ 7 2 7 lipses. A rise in elasticity 6 results in rotation of the principal axes of
z ¢° J the ellipse and a change in the eccentricity. As is seen from (2.7), the el~

lipse degenerates into a segment at the point of the maximum (2.6). Dur-
ing wave propagation the fluid particles near the free surface perform
Fig. 1 oscillations along lines at an angle tan™!(tanha) to the layer surface. The
particle trajectories will be ellipses as they recede from the free surface,
where the trajectory shape will be the same as in an ideal fluid for z >
|Re 1],

3. Tow Reynolds Numbers. Long waves (a < 1) are considered in a fluid layer on a solid surface
for |1 |a « 1, which is possible in the domain |Q|a® « 1, The last two equations in {1.10) yield in this limit
case

aoBy =— (1 4 Yy00%) A, — (1 + Y0a® + Y1ol%a*) LB,
Ay + By =—, (41 + IBy) @ + Y12 (A1 + I°By) a?

Eliminating A, and B, from the first two equations in (1.10) by using these formulas, the following
equation:

a (@ +Y/3Qa®) + (& + Y1,Q0%) ad = 0 (3.1)
can be obtained in the limita « 1, [I|a « 1.

It follows from (3.1) that there are no oscillating motions. Let Q > 0; then the roots of (3.1) are non-
positive.

The root oy, which equals —% Qa® for 6=0 (pure surface), diminishes monotonically and ay— — = as
6— o ;i.e., the relaxation time tends to zero. For sufficiently large &, the wave motion emerges from the
domain of low Reynolds numbers under consideration.

The solution oy, equal to zero for 6 = 0, decreases monotonically,a, — —1/12Qa3 as § — «, The larrge
values of the relaxation time for wave motion corresponding to «, are explained for small 6 by the magni-
tude of the characteristic force exciting this flow,

Let van der Waals forces play a decisive role in the film; then @ < 0 according to (1.2) and (1.9). One
root of (3.1) is hence positive. The solution o !corresponding to a wave of growing amplitude, varies
monotonically between —1/39513 and —%29a3. The passage to the limit case of an incompressible surfactant
layer occurs gradually, where the layer is incompressible if 6 > 1/3] Q|a?. For long waves this latter condi-
tion can be considerably weaker than the condition 6 > V2 (Qa)3/ 4, which is valid in the low viscosity domain,
Therefore, surfactants act especially effectively on long waves in thin layers.

4. Fluid Film in a Gas. A liquid layer in a gas is examined, where the free surfaces are covered by
identical surfactant layers, Let the origin be in the plane of symmetry of the film, and let the z axis be
perpendicular thereto. A symmetric solution {the pressure is an even function of z) of the Navier—Stokes
equations (1.1) can be extracted from (1.7)

vt =i (kA4 chkz + ' B, ch l'z) e F=+w't
vt =k (A, shkz + B, shl’z) et 4.1)
P = Po— 2Q% (—h/2) —pa’ A, ch kz etF=wt
Here (1.2) has been applied in calculating p and it has been taken into account that h — hy=1¢ (%h} -
IS (—1/2h) . By virtue of the symmetry it is sufficient to satisfy the boundary conditions for z = —1/2h. Equa-

tions for the coefficients in (4.1) canbe obtained from (1.3)-(1.5) and the first equation of (1.6) written for
Z = —%h. For simplification, the following notation is introduced:
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a = Ygkh, A, = A,cha, B, = By ch (*/5l'h) (4.2)
Also,using all the notation (1.9) in addition to this latter, it is possible to find, finally,

(2+2) A, + 2B, =— (A, tha + B, thla)Q/ a
24, the+ (2+a)B,thla =— (A, + (B,)d/a 4.3)
(Q =(—20k)/pvek, I=Vaf1)

Hence, the equation for « follows:
(Qtha + 2 +a)?) thla —4lthe + 8 (I —Q (th le — Ithe) a~2) =0 (4.4)
Antisymmetric waves determined from (1.1) by analogy with (1.7) in the form

v, =i (kA;shkz 4 I'Byshl z)eifxat
v,” =k (A4, chkz 4+ Bychl'z) gtF*+at 4.5)
P = p, — pa’ Ay sh kz g"F5at

enter in addition to the symmetric waves in a complete system of waves.

It is important that the forces taken into account in (1.2) should not enter here since v; g (1/2h) =
g (—%h) because of evenness. Van der Waals forces do not affect the antisymmetric waves, Using the nota-
tion

@ ="Yykh,  Ash(Ygkh)=A_,  Bysh(Yyl'h)=B_ @.6)
the following equations can be obtained from (1.3)-(1.5) and the first equation in (1.68) for z = —1/2h:

@ +a)A_ -2IB_ = —(A_cth @ + B_cth la) Q'fa v
24_ctha 4 (2 4~ a) B_cth la = —(A_ + IB) §/a 4.7
(Q=0/pvk, I=Vat1)

It should be noted that the form of writing the boundary conditions at z = 1/2h differs in sign from (1.3)
and (1.5). It can be shown that because of the symmetry of the problem these conditions will be satisfied
automatically for symmetric and antisymmetric waves if the corresponding conditions are satisfied for z =
—%h. The equation for « in the case of antisymmetric waves should follow from (4.7):

[Q ctha + (2 +o)?lcthla — &l ctha 48[l —Q’ (cth la —lctha)a—?] =0 (4.8)

The equations for the different kinds of waves (4.4) and (4.8) differ by the replacement tha — ctha,
thla —cth la, Q —Q'.

The complex conjugate corresponds to each root of these equations. On going to a layer of large thick-
ness (@ — «) the difference between (4.4) and (4.8) vanishes, where both these equations also agree with
(2.3) in the limit. Equations (4.4) and (4.8) admit of analytical investigation in the limit cases |a|a? > 1 and
lo|@? << 1.

5. Low Viscosity, For |I|a » 1, |1| > 1, equations (4.4) and (4.8) can be solved by iteration, Exact-
ly as for a film on a solid surface, waves are possible here which are localized near the free surface in a
thin layer Az ~ |1'|™, as are waves associated with motion in a volume. Below, the "volume" waves are
examined. The following asymptotic expressions for the frequency Im o, the frequency shift, and the damp-
ing are obtained from (4.4), analogously to (2.5), in the case of symmeiric waves:

m=iV Qg (o0 = a1+ az), E=Imas = yQ'/‘/(i 3% gV2 .1)
{=Ream=—2—-0"1+)¢"V2 y=V2(Q)%—1

Here q = tanha, a = 1/2kh It follows from (5.1) that there is a maximum damping for § = \/_Z'(Qq)3/4.
Wave damping in the case of an incompressible layer corresponds to the minimum. As the parameter a
diminishes, symmetric wave damping increases, and the damping maximums are observed for all lesser
values of the coefficient of elasticity (6 ~«¥4), In contrast to a film on a solid substrate, where the diminu-
tion in thickness results in a reduction in the relative amplitude (£/Z&,, ) of the damping maximum, the
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relative amplitude of the maximum is not lowered here, As the film thickness diminishes, the approxima-
tion | afa® > 1 becomes invalid sufficiently rapidly. Formulas (5.1) remain valid for Q@ » 1, Qa®>1, Some-
what different results are obtained in the case of antisymmetric waves. Expressions for the frequency, the
frequency shift, and damping which agree with (5.1) can be derived for these waves from (4.8) if we put
therein

g=ctha, Q=0/pvk (a=khr/2)

It is seen from (5.1) that the damping of an antisymmetric wave decreases as the film thickness h
diminishes, but the oscillation frequency grows. A damping maximum is gbserved for all large values of
the elasticity of the surfactant layer, where its amplitude decreases as h3/4. For small a antisymmetric
waves are the bending oscillations of a thin layer of viscous fluid enclosed between two stretched elastic
membranes. In the case of antisymmetric waves, the approximation |a|a? > 1 is applicable in a larger
range of values of a than in the case of symmetric waves, Formulas (5.1) are valid in the case of antisym-
metric waves (q = cotha) for Q'a® »1, Q' «1,

6. Antisymmetric Waves for |ala? «1. If Q'a «1, then it can be considered that | ]a « 1 in (4.8),
and by using the expansion of cothx at zero, the following equation, which is valid in the domain |a|>1,
|ala? « 1, can be obtained:

@ (Qa +0?) +6(a(l fa) LQ) =0 (6.1)

If the elasticity 6 is large, then purely damped motions are possible. For 6 > (& /a3)1/2 one of the
roots of (6.1) will be a ~ —ad. In the case of a pure surface there follows from (6.1)

o, =iy Q/a (o =i VZok*] ph)

The damping of oscillations corresponding to this root is zero in a first approximation. For an in-
compressible layer (§ = «) the frequency differs slightly from Im o4, and the dimensijonless damping dec-
rement equals 1/2 As is seen from (6.1), the passage to an incompressible layer occurs for § ~ (Q‘/a3)1/2.

Therefore, as the film thickness diminishes, the influence of surfactants on antisymmetric waves de-
creases, For small a an elasticity 6 considerably exceeding the elasticity 6 ~ Qa?, say, which is needed to
stabilize the free surface of a film on a solid substrate, is required for complete stabilization of the surface
relative to a wave of the given length.

Nevertheless, it is impossible to consider the influence of surfactants on damping of waves of the type
under consideration as weak, The fact is that taking account of the second approximation in (4.8) yields
Re o =--"’/3aZ in the case of a pure surface, Hence, for long waves @ <« 1) damping because of surfactants
can grow about a~?-fold, Under real conditions, the quantity @ can be on the order of 1073 and less, which
would result in practically undamped waves in the case of a pure surface.

The presence of a gas medium surrounding the film can be a factor, in addition to the surfactants,
which will considerably increase the damping of the waves under consideration. Taking account of the gas
motion during oscillations of the film results in the following., The magnitude of the damping in the case of
a pure surface is independent of the motion in the gas for a®(a/ Q')1/4 > W' /u (u'is the dynamic gas vis-
cosity). The gas motion can be neglected in the calculation of oscillation frequency only for a » p' /p (p'
is the gas density). Ifu ~ 1072 g/cm - sec and the film is in air, then for @ ¢ 1073 the frequency of waves
of this type will depend primarily on the inertial properties of the gas, and as the film thickness diminishes
further the growth in oscillation frequency will cease,

7. Symmetric Waves for |a]|a® <1, Neglecting small quantities, (4.4) in the limit |7la <« 1 can be
rewritten as follows:

a0 (Qa 44a a2 (& -5 Qa%) 6 =0 (7.1)
(@ = (5 — 2QK™) | pv?k)

If capillary forces play the main role in the film, then Q > 0. It is seen from (7.1) that if Qa > 1, then
the wave motion is oscillatory for 6 =0, and there is also aperiodic motion with the damping decrement
1/3&13 for 6 —«. For Qa® « 1, the following approximate formulas can be found for the roots of (7.1):

T = TR o P d
a1,3=—ZiV4—a16~Qa, dgz—m (7'2)
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If Qa > 1, then for § « Qa® there are waves caused by capillary forces. Two traveling waves, differ-
ing in the propagation direction, correspond to the roots oy and a3, For 6 > Qa? the surface tension of the
liquid does not influence the waves corresponding to oy and oy, Elasticity of the surfactant surface layer is
exclusively the reason for the appearance of these waves. The velocity vy hence varies insignificantly
along the film cross section, as is seen from (4.1). The fact that some mass of fluid in each film section
seems to be "glued" to two elastic "membranes" because of viscosity is the physical reason for the origin
of such waves. The dimensionless frequency equals ~v §/a, and the damping decrement of about 2 is
relatively small. Waves of this kind are described correctly by (7.1) while 6a’<« 1.

Waves caused by the elasticity of the surface layer have been examined in [9, 10], where (7.1) and the
first formula in (7.2), in particular, have been obtained in a somewhat different form *

The second formula in (7.2) is valid for any 8. Relative to the aperiodic motion corresponding to ,,
the surfactant layer behaves as though incompressible for &> Qa?; the characteristic relaxation time
hence increases approximately a ~2-fold under the influence of surfactants.

The quantity Q in (7.1) can be negative because of van der Waals forces, This is possible for long
waves in thin films since the Hammacher constant A in (1.2) is on the order of 1072 erg (see [7], for
example). In the case @ < 0, it is convenient to rewrite (7.1) in a new notation

6* = ’_Qa27 § = 6* (1 +as)! @ = Zﬁ* (7.3)
8,28 + 422 +s2 — (1 +as) =0

Let 6 « « 1. Then applying the method of asymptotic coalescence to the solution of (7.3), the following
asymptotic formulas can be found for the roots:

=(VI—U8s —1)2/84 z="s(a+sY for s>1
ZL=—1/8(5+V32+—16/3) Zz=1/s(—3+VWm/3) for [s|<<M (7.4)
=Ys(a+sY, z=F1—"ds—1)2/8, for <<—1
2g=— (VI — b5 +1)2/8, (M=min(?,8,7)

For 6% S 1 formulas (7.4) will be suitable in the domain |s| > 61*/3. Values of o corresponding to zj
can be denoted by oj (j =1, 2, 3). As is seen from (7.4), the root o, corresponds to a wave of growing
amplitude. The roots o, and oy correspond either to aperiodic motions (for 6 — 4 < 4a), or to traveling
waves with frequency v (6 — 8 )/4a — 1 and damping decrement two (dimensionless notation).

1t follows from (7.3) and (7.4) that as é passes through the circle 6 a sharp change in ¢ and o, occurs.

The inequality |Q|e >>1 is the condition for a slight change in 6«. For [Qla ¢ 1 the quantity o varies
substantially over the whole domain 0 < § <06«. If |[22]a > 1, then 6«> a. Hence, as § increases in the
neighborhood of &« , the quantity o, diminishes approximately @« )"1-fold, and joi] increases the same
number of times,

In films existing in a foam, @6)™! can be a quantity on the order of tens of thousands and greater.
Hence, although the behavior of @, is described by smooth functions according to (7.4), it can be considered
in practice that the film is not stabilized for 6 < 3, and is stabilized for § > 6, . This deduction is in
agreement with the results of the authors of [9, 10], obtained by numerical computations on an electronic
computer.

If the capillary forces in a wave of growing amplitude are small as compared with the van der Waals
forces k’c «<A/7h’, then |e| > %A/ mh® will be the condition for a small difference in the surfactant from
an incompressible layer on the basis of (1.2), (4.3), (7.3), and (7.4). For lesser elasticities ||, the film
should rupture practically instantaneously. It can also be deduced from (7.3) and (7.4) that one of the dif-
ferences of a stabilized from an unstabilized film is manifested in the origin, because of elasticity of the
surfactant layer, of traveling waves whose frequency grows as the elasticity increases, while the damping
decrement remains constant,

* The author learned of the existence of [9, 10] after the paper had been sent to press.
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